

sEMG-based Gesture Recognition with Spiking Neural Networks on Low-power FPGA

Matteo A. Scrugli, Gianluca Leone, Paola Busia, Paolo Meloni, Università degli Studi di Cagliari, Italy

17-19 January 2024 Munich, Germany

SNNs on FPGA

- SNNs
 - Event-based for energy efficiency

- FPGA as a target
 - DSPs
 - Flexible BRAMs
 - Additional RL
 - Use-case flexible encoding/deconding
 - Emulate event-based with additional clockbased circuitry
 - Affordable costs

2

State-of-the-art

Work	Dataset	Encoding	Classes	Accuracy	Device	Energy	Power	Mops
Behrenbeck, J. 2019	custom 4 subjects	Delta	4	84.8%	SpiNNaker	N.R. ¹	1-4 W	N.R.
Cheng, L. 2021	custom 8 subjects	Population	8	94.4%	N.R.	N.R.	N.R.	0.013
Tanzarella, S. 2023	custom 5 subjects	HD-sEMG Decomposition	10	95%	Jetson	0.97 mJ	100 mW	7.97*
Xu, M. 2023	custom 10 subjects	Event-drive Differential	6	98.78%	N.R.	N.R.	N.R.	6.57
Vitale <i>,</i> A. 2022	NinaPro DB5	Delta	12	74%	Loihi	246 mJ	41 mW	11.56*
Our	NinaPro DB5	Delta	12	85.6%	FPGA	35.68 uJ	1.7 mW	2.336

¹ Not Reported.

* Estimated from the paper.

SYNtzulu: architecture

Copyright © 2023

Assessment: low-end implementation

Lattice iCE40UP5k FPGA

- 5280 logic cells (4-LUT + Carry + FF)
- Around 1 Mbit on-chip RAM
- PLL, 2 x SPI, 2 x I2C hard IPs
- Two internal oscillators (10 kHz and 48 MHz) for simple designs
- Eight DSP multiplier blocks

LUT & FF	DSP	BRAM	SPRAM
4506 (85%)	2 (25%)	21 (70%)	4 (100%)

SNN and training

- Feed-forward SNN 4 FC layers
- PyTorch package **SLAYER** (Spike LAYER Error Reassignment)

Input channels	L1	L2	L3	L4	Max axonal delay	Loss	Learning rate	Patience
96	64	128	64	13	62	SpikeRate	Up to 10e-5	40 epochs

Accuracy

- Accuracy equal to 85.6%.
- 45% of the errors are concentrated in the first row and first column of the confusion matrix.
- True Labels

• Network outputs are filtered. If an output is isolated, it is considered the last valid output.

\mathbf{Rest}	7078	36	1	28	43	1	4	26	1	39	86	2	32
Idx Flx	62	268	30	15	21	5	17	11	0	0	2	2	2
Idx Ext	31	23	224	8	12	3	1	0	0	0	2	0	0
Mid Flx	30	31	3	285	14	7	8	13	3	3	0	0	0
Mid Ext	17	4	3	0	244	8	4	5	7	0	2	0	0
Ring Flx	43	8	2	12	12	258	2	14	2	3	0	2	2
Ring Ext	39	30	3	17	36	8	218	7	3	2	0	0	10
Lit Flx	48	5	5	6	13	18	26	237	7	10	6	3	11
Lit Ext	52	0	0	5	5	10	13	13	253	0	13	7	0
Thm Add	7	10	0	0	0	0	10	4	0	161	6	70	7
Thm Abd	71	2	4	0	0	0	2	3	3	7	190	17	19
Thm Flx	21	0	4	0	0	0	0	0	0	64	2	166	10
Thm Ext	32	0	10	2	2	0	0	7	2	9	3	6	252
itput - 12 ion - 10 ension - 10	Rest	Idx Flx	Idx Ext	Mid Flx	Mid Ext	Ring Flx	Ring Ext	Lit Flx	Lit Ext	Thm Add	Thm Abd	Thm Flx	Thm Ext

Predicted Labels

Repetitions 5 of each exercise were considered to comprise the test set.

Vitale, A. 2022	Our work						
Commor	naspects						
NinaPro DB5 data							
Delta encoc	ling method						
12 cl	asses						
Divergent aspects							
Loihi platform	Lattice FPGA						
100 mW of power consumption	1.7 mW of power consumption						
8 sEMG channels	16 sEMG channels						
Repetition 3 and 5 in the test set	Repetition 5 in the test set						
Accuracy up to 74%	Accuracy up to 85.6%						
11.5 MOPS	2.3 MOPS						

Power consumption

• Dynamic Frequency Scaling with two system frequencies: 10KHz and 22.5MHz

11

Sparsity and inference time

Sparsity	90.99%		
Effective sparsity	77.11%		
Inference time	2.9 ms		
Inference period	100 ms		

12

- Real-time sEMG classification system.
- High classification accuracy at the state of the art.
- Optimized for Lattice iCE40-UltraPlus FPGA and model for operational efficiency.
- Low Power Consumption.